↳ ITRS
↳ ITRStoIDPProof
z
Cond_eval(TRUE, i, j, k) → eval(j, +@z(i, 1@z), -@z(k, 1@z))
eval(i, j, k) → Cond_eval(&&(<=@z(i, 100@z), <=@z(j, k)), i, j, k)
Cond_eval(TRUE, x0, x1, x2)
eval(x0, x1, x2)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
z
Cond_eval(TRUE, i, j, k) → eval(j, +@z(i, 1@z), -@z(k, 1@z))
eval(i, j, k) → Cond_eval(&&(<=@z(i, 100@z), <=@z(j, k)), i, j, k)
(0) -> (1), if ((k[0] →* k[1])∧(i[0] →* i[1])∧(j[0] →* j[1])∧(&&(<=@z(i[0], 100@z), <=@z(j[0], k[0])) →* TRUE))
(1) -> (0), if ((+@z(i[1], 1@z) →* j[0])∧(-@z(k[1], 1@z) →* k[0])∧(j[1] →* i[0]))
Cond_eval(TRUE, x0, x1, x2)
eval(x0, x1, x2)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
z
(0) -> (1), if ((k[0] →* k[1])∧(i[0] →* i[1])∧(j[0] →* j[1])∧(&&(<=@z(i[0], 100@z), <=@z(j[0], k[0])) →* TRUE))
(1) -> (0), if ((+@z(i[1], 1@z) →* j[0])∧(-@z(k[1], 1@z) →* k[0])∧(j[1] →* i[0]))
Cond_eval(TRUE, x0, x1, x2)
eval(x0, x1, x2)
(1) (EVAL(i[0], j[0], k[0])≥NonInfC∧EVAL(i[0], j[0], k[0])≥COND_EVAL(&&(<=@z(i[0], 100@z), <=@z(j[0], k[0])), i[0], j[0], k[0])∧(UIncreasing(COND_EVAL(&&(<=@z(i[0], 100@z), <=@z(j[0], k[0])), i[0], j[0], k[0])), ≥))
(2) ((UIncreasing(COND_EVAL(&&(<=@z(i[0], 100@z), <=@z(j[0], k[0])), i[0], j[0], k[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(3) ((UIncreasing(COND_EVAL(&&(<=@z(i[0], 100@z), <=@z(j[0], k[0])), i[0], j[0], k[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(4) (0 ≥ 0∧(UIncreasing(COND_EVAL(&&(<=@z(i[0], 100@z), <=@z(j[0], k[0])), i[0], j[0], k[0])), ≥)∧0 ≥ 0)
(5) (0 ≥ 0∧0 = 0∧(UIncreasing(COND_EVAL(&&(<=@z(i[0], 100@z), <=@z(j[0], k[0])), i[0], j[0], k[0])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(6) (j[1]=i[0]1∧-@z(k[1], 1@z)=k[0]1∧i[0]=i[1]∧&&(<=@z(i[0], 100@z), <=@z(j[0], k[0]))=TRUE∧k[0]=k[1]∧j[0]=j[1]∧+@z(i[1], 1@z)=j[0]1 ⇒ COND_EVAL(TRUE, i[1], j[1], k[1])≥NonInfC∧COND_EVAL(TRUE, i[1], j[1], k[1])≥EVAL(j[1], +@z(i[1], 1@z), -@z(k[1], 1@z))∧(UIncreasing(EVAL(j[1], +@z(i[1], 1@z), -@z(k[1], 1@z))), ≥))
(7) (<=@z(i[0], 100@z)=TRUE∧<=@z(j[0], k[0])=TRUE ⇒ COND_EVAL(TRUE, i[0], j[0], k[0])≥NonInfC∧COND_EVAL(TRUE, i[0], j[0], k[0])≥EVAL(j[0], +@z(i[0], 1@z), -@z(k[0], 1@z))∧(UIncreasing(EVAL(j[1], +@z(i[1], 1@z), -@z(k[1], 1@z))), ≥))
(8) (100 + (-1)i[0] ≥ 0∧k[0] + (-1)j[0] ≥ 0 ⇒ (UIncreasing(EVAL(j[1], +@z(i[1], 1@z), -@z(k[1], 1@z))), ≥)∧-1 + (-1)Bound + k[0] + (-1)j[0] + (-1)i[0] ≥ 0∧1 ≥ 0)
(9) (100 + (-1)i[0] ≥ 0∧k[0] + (-1)j[0] ≥ 0 ⇒ (UIncreasing(EVAL(j[1], +@z(i[1], 1@z), -@z(k[1], 1@z))), ≥)∧-1 + (-1)Bound + k[0] + (-1)j[0] + (-1)i[0] ≥ 0∧1 ≥ 0)
(10) (100 + (-1)i[0] ≥ 0∧k[0] + (-1)j[0] ≥ 0 ⇒ -1 + (-1)Bound + k[0] + (-1)j[0] + (-1)i[0] ≥ 0∧(UIncreasing(EVAL(j[1], +@z(i[1], 1@z), -@z(k[1], 1@z))), ≥)∧1 ≥ 0)
(11) (100 + (-1)i[0] ≥ 0∧j[0] ≥ 0 ⇒ -1 + (-1)Bound + j[0] + (-1)i[0] ≥ 0∧(UIncreasing(EVAL(j[1], +@z(i[1], 1@z), -@z(k[1], 1@z))), ≥)∧1 ≥ 0)
(12) (100 + (-1)i[0] ≥ 0∧j[0] ≥ 0∧k[0] ≥ 0 ⇒ -1 + (-1)Bound + j[0] + (-1)i[0] ≥ 0∧(UIncreasing(EVAL(j[1], +@z(i[1], 1@z), -@z(k[1], 1@z))), ≥)∧1 ≥ 0)
(13) (100 + (-1)i[0] ≥ 0∧j[0] ≥ 0∧k[0] ≥ 0 ⇒ -1 + (-1)Bound + j[0] + (-1)i[0] ≥ 0∧(UIncreasing(EVAL(j[1], +@z(i[1], 1@z), -@z(k[1], 1@z))), ≥)∧1 ≥ 0)
(14) (100 + (-1)i[0] ≥ 0∧j[0] ≥ 0∧k[0] ≥ 0∧i[0] ≥ 0 ⇒ -1 + (-1)Bound + j[0] + (-1)i[0] ≥ 0∧(UIncreasing(EVAL(j[1], +@z(i[1], 1@z), -@z(k[1], 1@z))), ≥)∧1 ≥ 0)
(15) (100 + i[0] ≥ 0∧j[0] ≥ 0∧k[0] ≥ 0∧i[0] ≥ 0 ⇒ -1 + (-1)Bound + j[0] + i[0] ≥ 0∧(UIncreasing(EVAL(j[1], +@z(i[1], 1@z), -@z(k[1], 1@z))), ≥)∧1 ≥ 0)
(16) (100 + (-1)i[0] ≥ 0∧j[0] ≥ 0∧k[0] ≥ 0∧i[0] ≥ 0 ⇒ -1 + (-1)Bound + j[0] + (-1)i[0] ≥ 0∧(UIncreasing(EVAL(j[1], +@z(i[1], 1@z), -@z(k[1], 1@z))), ≥)∧1 ≥ 0)
(17) (100 + i[0] ≥ 0∧j[0] ≥ 0∧k[0] ≥ 0∧i[0] ≥ 0 ⇒ -1 + (-1)Bound + j[0] + i[0] ≥ 0∧(UIncreasing(EVAL(j[1], +@z(i[1], 1@z), -@z(k[1], 1@z))), ≥)∧1 ≥ 0)
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(<=@z(x1, x2)) = -1
POL(100@z) = 100
POL(TRUE) = 0
POL(&&(x1, x2)) = 0
POL(+@z(x1, x2)) = x1 + x2
POL(COND_EVAL(x1, x2, x3, x4)) = -1 + x4 + (-1)x3 + (-1)x2 + (-1)x1
POL(EVAL(x1, x2, x3)) = -1 + x3 + (-1)x2 + (-1)x1
POL(FALSE) = 0
POL(1@z) = 1
POL(undefined) = -1
COND_EVAL(TRUE, i[1], j[1], k[1]) → EVAL(j[1], +@z(i[1], 1@z), -@z(k[1], 1@z))
COND_EVAL(TRUE, i[1], j[1], k[1]) → EVAL(j[1], +@z(i[1], 1@z), -@z(k[1], 1@z))
EVAL(i[0], j[0], k[0]) → COND_EVAL(&&(<=@z(i[0], 100@z), <=@z(j[0], k[0])), i[0], j[0], k[0])
FALSE1 → &&(FALSE, FALSE)1
-@z1 ↔
&&(TRUE, TRUE)1 ↔ TRUE1
+@z1 ↔
&&(FALSE, TRUE)1 ↔ FALSE1
&&(TRUE, FALSE)1 ↔ FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
z
Cond_eval(TRUE, x0, x1, x2)
eval(x0, x1, x2)