Termination of the given ITRSProblem could successfully be proven:



ITRS
  ↳ ITRStoIDPProof

ITRS problem:
The following domains are used:

z

The TRS R consists of the following rules:

Cond_eval(TRUE, i, j, k) → eval(j, +@z(i, 1@z), -@z(k, 1@z))
eval(i, j, k) → Cond_eval(&&(<=@z(i, 100@z), <=@z(j, k)), i, j, k)

The set Q consists of the following terms:

Cond_eval(TRUE, x0, x1, x2)
eval(x0, x1, x2)


Added dependency pairs

↳ ITRS
  ↳ ITRStoIDPProof
IDP
      ↳ UsableRulesProof

I DP problem:
The following domains are used:

z

The ITRS R consists of the following rules:

Cond_eval(TRUE, i, j, k) → eval(j, +@z(i, 1@z), -@z(k, 1@z))
eval(i, j, k) → Cond_eval(&&(<=@z(i, 100@z), <=@z(j, k)), i, j, k)

The integer pair graph contains the following rules and edges:

(0): EVAL(i[0], j[0], k[0]) → COND_EVAL(&&(<=@z(i[0], 100@z), <=@z(j[0], k[0])), i[0], j[0], k[0])
(1): COND_EVAL(TRUE, i[1], j[1], k[1]) → EVAL(j[1], +@z(i[1], 1@z), -@z(k[1], 1@z))

(0) -> (1), if ((k[0]* k[1])∧(i[0]* i[1])∧(j[0]* j[1])∧(&&(<=@z(i[0], 100@z), <=@z(j[0], k[0])) →* TRUE))


(1) -> (0), if ((+@z(i[1], 1@z) →* j[0])∧(-@z(k[1], 1@z) →* k[0])∧(j[1]* i[0]))



The set Q consists of the following terms:

Cond_eval(TRUE, x0, x1, x2)
eval(x0, x1, x2)


As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
IDP
          ↳ IDPNonInfProof

I DP problem:
The following domains are used:

z

R is empty.
The integer pair graph contains the following rules and edges:

(0): EVAL(i[0], j[0], k[0]) → COND_EVAL(&&(<=@z(i[0], 100@z), <=@z(j[0], k[0])), i[0], j[0], k[0])
(1): COND_EVAL(TRUE, i[1], j[1], k[1]) → EVAL(j[1], +@z(i[1], 1@z), -@z(k[1], 1@z))

(0) -> (1), if ((k[0]* k[1])∧(i[0]* i[1])∧(j[0]* j[1])∧(&&(<=@z(i[0], 100@z), <=@z(j[0], k[0])) →* TRUE))


(1) -> (0), if ((+@z(i[1], 1@z) →* j[0])∧(-@z(k[1], 1@z) →* k[0])∧(j[1]* i[0]))



The set Q consists of the following terms:

Cond_eval(TRUE, x0, x1, x2)
eval(x0, x1, x2)


The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair EVAL(i, j, k) → COND_EVAL(&&(<=@z(i, 100@z), <=@z(j, k)), i, j, k) the following chains were created:




For Pair COND_EVAL(TRUE, i, j, k) → EVAL(j, +@z(i, 1@z), -@z(k, 1@z)) the following chains were created:




To summarize, we get the following constraints P for the following pairs.



The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(-@z(x1, x2)) = x1 + (-1)x2   
POL(<=@z(x1, x2)) = -1   
POL(100@z) = 100   
POL(TRUE) = 0   
POL(&&(x1, x2)) = 0   
POL(+@z(x1, x2)) = x1 + x2   
POL(COND_EVAL(x1, x2, x3, x4)) = -1 + x4 + (-1)x3 + (-1)x2 + (-1)x1   
POL(EVAL(x1, x2, x3)) = -1 + x3 + (-1)x2 + (-1)x1   
POL(FALSE) = 0   
POL(1@z) = 1   
POL(undefined) = -1   

The following pairs are in P>:

COND_EVAL(TRUE, i[1], j[1], k[1]) → EVAL(j[1], +@z(i[1], 1@z), -@z(k[1], 1@z))

The following pairs are in Pbound:

COND_EVAL(TRUE, i[1], j[1], k[1]) → EVAL(j[1], +@z(i[1], 1@z), -@z(k[1], 1@z))

The following pairs are in P:

EVAL(i[0], j[0], k[0]) → COND_EVAL(&&(<=@z(i[0], 100@z), <=@z(j[0], k[0])), i[0], j[0], k[0])

At least the following rules have been oriented under context sensitive arithmetic replacement:

FALSE1&&(FALSE, FALSE)1
-@z1
&&(TRUE, TRUE)1TRUE1
+@z1
&&(FALSE, TRUE)1FALSE1
&&(TRUE, FALSE)1FALSE1


↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDPNonInfProof
IDP
              ↳ IDependencyGraphProof

I DP problem:
The following domains are used:

z

R is empty.
The integer pair graph contains the following rules and edges:

(0): EVAL(i[0], j[0], k[0]) → COND_EVAL(&&(<=@z(i[0], 100@z), <=@z(j[0], k[0])), i[0], j[0], k[0])


The set Q consists of the following terms:

Cond_eval(TRUE, x0, x1, x2)
eval(x0, x1, x2)


The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.